If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+1326=0
a = -16; b = 0; c = +1326;
Δ = b2-4ac
Δ = 02-4·(-16)·1326
Δ = 84864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84864}=\sqrt{64*1326}=\sqrt{64}*\sqrt{1326}=8\sqrt{1326}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1326}}{2*-16}=\frac{0-8\sqrt{1326}}{-32} =-\frac{8\sqrt{1326}}{-32} =-\frac{\sqrt{1326}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1326}}{2*-16}=\frac{0+8\sqrt{1326}}{-32} =\frac{8\sqrt{1326}}{-32} =\frac{\sqrt{1326}}{-4} $
| 7(-5k-5)+6=2k+37 | | 56x=909090909 | | -16x^2+1326=) | | 6/7f+8=-9 | | 3x+4(-2x+6)=4 | | 3+t1/2=1/2 | | -2(x+3)+3=3(x+2)+4 | | 26+3x=14 | | 4-(y+1)=-8 | | t+28=5 | | 7-2x=7x-83 | | -63=63+9r | | b-3/16=516 | | -5-2x=x-5 | | 2x+69=3x+4 | | 5x^2-2x-24=-8 | | 3x+4(-2x=+6)=4 | | 10(z−9)=−40 | | -5x-(6x+4)=16-7x | | 0=(x^2)+7x+6 | | (X)(3x-2)=176 | | 13x*x-41x-120=0 | | -8n-31=-3(5+2n) | | 9(a+5)+2=1 | | 7/3x+5=8/3 | | 8x-2+14=2x+18 | | 0.5x-0.9(4-x)=5.5 | | 4.5(c+12.3=2.2c+37.15 | | 3x-4+1=5x+7 | | 4x-6/5=6 | | −4+5n=18+3n | | 30+6m=11m |